Mining 911 Calls in New York City: Temporal Patterns, Detection, and Forecasting
نویسندگان
چکیده
The New York Police Department (NYPD) is tasked with responding to a wide range of incidents that are reported through the city’s 911 emergency hotline. Currently, response resources are distributed within police precincts on the basis of high-level summary statistics and expert reasoning. In this paper, we describe our first steps towards a better understanding of 911 call activity: temporal behavioral clustering, predictive models of call activity, and anomalous event detection. In practice, the proposed techniques provide decision makers granular information on resource allocation needs across precincts and are important components of an overall data-driven resource allocation policy.
منابع مشابه
Town trip forecasting based on data mining techniques
In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملTowards a comparative science of cities: using mobile traffic records in New York, London and Hong Kong
This chapter examines the possibility to analyze and compare human activities in an urban environment based on the detection of mobile phone usage patterns. Thanks to an unprecedented collection of counter data recording the number of calls, SMS, and data transfers resolved both in time and space, we confirm the connection between temporal activity profile and land usage in three global cities:...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملDriving with Data: Modeling and Forecasting Vehicle Fleet Maintenance in Detroit
The City of Detroit maintains an active fleet of over 2500 vehicles, spending an annual average of over $5 million on new vehicle purchases and over $7.7 million on maintaining this fleet. Understanding the existence of patterns and trends in this data could be useful to a variety of stakeholders, particularly as Detroit emerges from Chapter 9 bankruptcy, but the patterns in such data are often...
متن کامل